The Factored Frontier Algorithm for Approximate Inference in DBNs
نویسندگان
چکیده
The Factored Frontier (FF) algorithm is a simple approximate inference algorithm for Dynamic Bayesian Networks (DBNs). It is very similar to the fully factorized version of the Boyen-Koller (BK) algorithm, but in stead of doing an exact update at every step followed by marginalisation (projection), it always works with factored distributions. Hence it can be applied to models for which the exact update step is intractable. We show that FF is equivalent to (one iteration of) loopy belief propagation (LBP) on the origi nal DBN, and that BK is equivalent (to one iteration of) LBP on a DBN where we clus ter some of the nodes. We then show em pirically that by iterating more than once, LBP can improve on the accuracy of both FF and BK. We compare these algorithms on two real-world DBNs: the first is a model of a water treatment plant, and the second is a coupled HMM, used to model freeway traffic.
منابع مشابه
Dynamic Bayesian Networks : Representation , Inference and Learning
Dynamic Bayesian Networks: Representation, Inference and Learning by Kevin Patrick Murphy Doctor of Philosophy in Computer Science University of California, Berkeley Professor Stuart Russell, Chair Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible....
متن کاملDynamic Bayesian Networks : Representation ,
Dynamic Bayesian Networks: Representation, Inference and Learning by Kevin Patrick Murphy Doctor of Philosophy in Computer Science University of California, Berkeley Professor Stuart Russell, Chair Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible....
متن کاملDynamic Bayesian Networks : Representation , Inference and Learning by Kevin
Dynamic Bayesian Networks: Representation, Inference and Learning by Kevin Patrick Murphy Doctor of Philosophy in Computer Science University of California, Berkeley Professor Stuart Russell, Chair Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible....
متن کاملDiscovering Weakly-Interacting Factors in a Complex Stochastic Process
Dynamic Bayesian networks are structured representations of stochastic processes. Despite their structure, exact inference in DBNs is generally intractable. One approach to approximate inference involves grouping the variables in the process into smaller factors and keeping independent beliefs over these factors. In this paper we present several techniques for decomposing a dynamic Bayesian net...
متن کاملComplete pivoting strategy for the $IUL$ preconditioner obtained from Backward Factored APproximate INVerse process
In this paper, we use a complete pivoting strategy to compute the IUL preconditioner obtained as the by-product of the Backward Factored APproximate INVerse process. This pivoting is based on the complete pivoting strategy of the Backward IJK version of Gaussian Elimination process. There is a parameter $alpha$ to control the complete pivoting process. We have studied the effect of dif...
متن کامل